

The SensoBase Fairytale

Pascal Schlich¹ & Sylvie Cordelle²

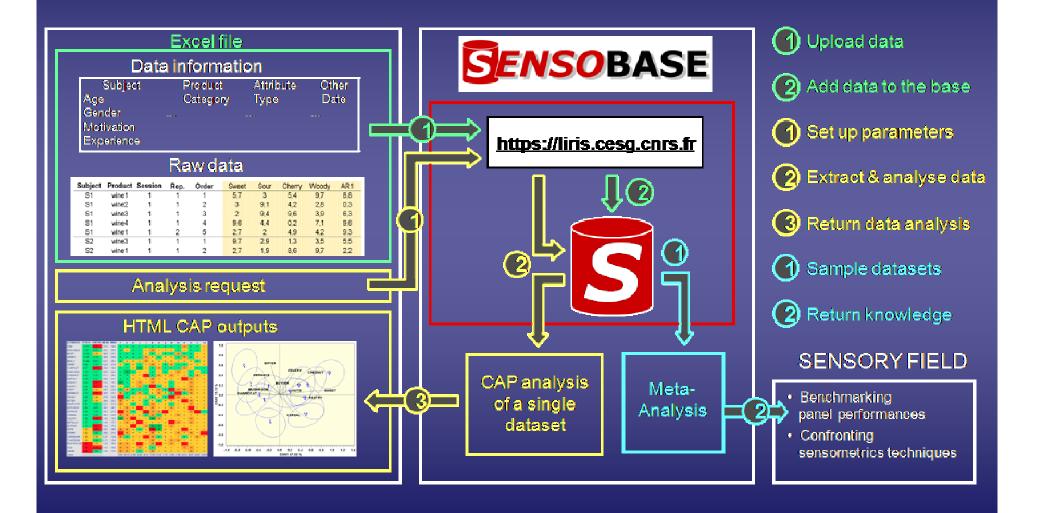
European Center for Taste Science (CESG), Dijon, France ¹: National Institute for Agronomical Research (INRA) ²: National Center for Scientific Research (CNRS)

schlich@cesg.cnrs.fr

The SensoBase project (<u>www.sensobase.fr</u>) was sponsored by a consortium of Technical Institutes for the Food Industry (ACTIA) and by the Council of Burgundy

A database of descriptive sensory data

WHY?


- To document the variety of practices in descriptive analysis
- To benchmark panel and panelist performances
- To compare sensometrics techniques on a large number of datasets HOW ?
- By offering a free statistical analysis of each dataset provided
- Example of the statistical analysis offered :
 <u>Wines from INRA Montpellier</u>

To contribute to this project with your own data:

www.sensobase.fr

Working flow chart of the SensoBase

Current contents of the SensoBase

About 3-4 years after having started the project, SensoBase is composed of :

- 683 datasets (sensory studies)
- 83 sensory labs from 17 countries (48 data providers)
- 2 731 panellists
- 4 367 products
- 12 558 sensory attributes
- 4 044 923 scores

Meta-analysis for establishing repeatability benchmarks

Mean of standard deviations of replicates (0-10 scale)

Meat-Fish 0.87 1.80 0.96 1.41 1.28 1.19 ^D 112 Beverages 1.18 1.24 1.26 1.10 1.06 1.20 ^D 182 Dairy 1.10 0.98 1.47 0.93 1.48 1.26 ^C 119 Ready-cooked dishes 1.16 1.17 1.33 1.38 1.70 1.35 ^B 99	28 0.65
Dairy 1.10 0.98 1.47 0.93 1.48 1.26 ^C 119 Ready-cooked 1.16 1.17 1.33 1.38 1.70 1.35 ^B 99	
Ready-cooked 1 16 1 17 1 33 1 38 1 70 1 35 99	
Ready-cooked 1 16 1 17 1 33 1 38 1 70 1 35 99	10.07
dishes 1.10 1.17 1.00 1.00 1.70 1.00 1.70 1.00	06 0.49
Bread 1.25 1.40 1.26 1.47 1.90 1.46 46	68 0.54
Fruit-Veg 1.47 1.34 1.44 1.40 1.63 1.48 142	22 0.59
Mean 1.17 ^D 1.23 ^C 1.28 ^{BC} 1.28 ^B 1.44 ^A 1.28 .	
n 1874 1294 1731 983 1481 . 737	75 .
Std 0.59 0.63 0.61 0.53 0.67 . .	0.62

Means with the same letter are not significantly different (p=0.05) Table based on 207 datasets

Meta-analysis for understanding factors of panelist performances

Indexes of performance

- Agreement = Pearson correlation coefficient (panelist versus others)
- Discrimination = MS_{product}/ (MS_{product} + MS_{residual}) (from indivudal one-way ANOVA)
- Repeatability = Root MS_{residual} (from a 0-10 scale)

Weighted ANOVA of a performance index

- · Index first averaged over attributes to get a single value per panelist
- Model: Index = Factor + Dataset + Factor*Dataset (for instance: Factor=AGE)
- Dataset is considered as a random effect
- Experimental unit: the panelist (n from 267 to 3,202 depending on the factor analyzed)
- Each dataset has a weight proportional to the balance of the factor level frequencies and to the total number of panelists in this dataset

Level of performances by age, gender, panelist education and sensory experience

			<u> </u>						<u> </u>		
AGE (n=3,202)	F-tests in ANOVA			AGE	Meen	GENDER	F-tests in ANOVA			GEN	Mean
	AGE	Dataset	AGE*Dataset	Level	Mean	(n=2,381)	GEN	Dataset	GEN*Dataset	Level	Mean
Agreement	2.35	14.10	1.12	All	0.387	Agreement	0.24	14.86	1.16	All	0.385
				30-	0.615 b	Discrimination	0.10	8.39	1.22	All	0.616
Discrimination	9.52	8.80	1.09	30-45	0.627 a	Repeatability	0.01	12.96	0.84	All	1.185
				45+	0.612 b	EXPERIENCE		F-tests in A	NOVA	EXP	
Repeatability	2.31	13.22	0.99	All	1.207	(n=486)	EXP	Dataset	EXP*Dataset	Level	Mean
EDUCATION		F-tests in A	ΝΟΛΦ	EDU						none	0.372 b
EDUCATION		F-tests in A		EDU	Mean	Agreement	3.13	13.65	0.99		
EDUCATION (n=267)	EDU	F-tests in A Dataset	NOVA EDU*Dataset	EDU Level	Mean	Agreement	3.13	13.65	0.99	1-3 years	0.402 a
					Mean 0.363	Agreement	3.13	13.65	0.99		
(n=267)	EDU	Dataset	EDU*Dataset	Level	0.363	Agreement Discrimination	3.13 4.11	13.65	0.99 0.87	1-3 years >3 years	0.402 a 0.424 a
(n=267)	EDU	Dataset	EDU*Dataset	Level All						1-3 years >3 years none 1-3 years	0.402 a 0.424 a 0.616 b
(n=267) Agreement	EDU 1.72	Dataset 5.27	EDU*Dataset	Level All	0.363					1-3 years >3 years none	0.402 a 0.424 a 0.616 b 0.620 b

When significant (p=0.05), the F statistic is in yellow and the levels of the factor are compared. Otherwise, just the grand mean (All) is given.

Summary of the findings related to panelist performances

- Ability to discriminate products increase:
 - with level of education,
 - with level of expertise in sensory analysis,
 - in 30-45 years old subjects.
- However, these effects do not extend to repeatability
- Regarding types of descriptors:
 - appearance has got the best performances,
 - individual repeatability and discrimination are better on taste, flavor and odor compared to texture.
- Women are not better tasters than men !
- A huge variability of the levels of performances was observed across the sensory labs

Meta-analysis for assessing panel heterogenity in terms of repeatability and scaling

Usual ANOVA Model

$$Y_{jir} = a_j + b_i + c_{ji} + \mathcal{E}_{jir}$$

 a_j : judge effect. b_i : product effect c_{ji} : judge by product interaction

Brockhoff's Assessor Model

$$Y_{jir} = \alpha_j + \beta_j \nu_i + \varepsilon_{jir}$$

 α_j : judge effect. v_i : product effect β_j : scaling coefficient of judge j

Covariance Assessor Model (CAM)

$$Y_{jir} = a_j + \beta_j v_i + b_i + c_{ji} + \mathcal{E}''_{jir}$$

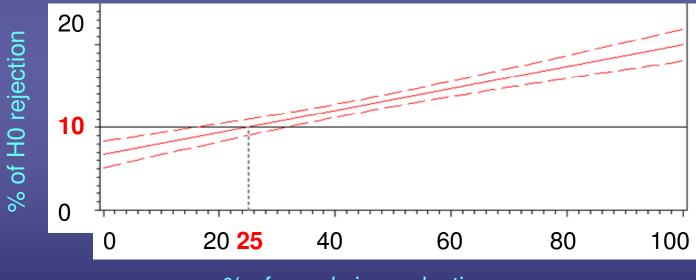
A mixture of both models allowing for a product effect adjusted to the scaling effect

- Usual ANOVA assumes panel homogeneity towards both repeatability and scaling
- Based on hundreds of datasets sampled from the Sensobase :
 - The tests of panel homogeneity provided by the Assessor model were significant in 73 and 76 % of the attributes for repeatability and scaling, questioning strongly the validity of ANOVA with sensory data
 - The use of a data transformation removing scaling did not result in more product effect significance
 - The use of CAM resulted in an increase of the percentage of attributes with a significant product effect from 59 % in classical ANOVA to 68 % with CAM

How many panelists are necessary ?

- 1. Take a dataset from the **Sensobase** composed of **n** subjects
- 2. Draw a sub-panel of size $\mathbf{n} \mathbf{k}$ ($\mathbf{k} = 1$ to $\mathbf{n} 2$)
- Analyze sub-panel data and decide whether the results are in accordance with those obtained from the analysis of the whole panel data
- 4. Redo steps 2 and 3 for 100 sub-panels
- 5. Redo steps 1 to 4 for a large number of datasets

Example of step 3 (analysis):


- Correlation coefficient between the vectors of product mean scores
- Discrimination power of the panel: $MS_{prod} / MS_{prod} + MS_{prod*subj}$
- Extension of both aspects to multivariate analysis

This research is ongoing, first results expected in 2009 ...

To what extent panel size can be reduced with no alteration of product mean scores ?

- Compute r the correlation coefficient between the vectors of product mean scores from the whole and the sub-panel
- Test H0 : "Good correlation, $\mathbf{r} = 0.9$ " against H1: "Lack of correlation, $\mathbf{r} < 0.9$ "

% of panel size reduction

From 89 datasets and 100 sub-panels per dataset and sub-panel size

In average, size of sensory panels could be reduced by 25%

Conclusion

Improving Sensobase :

- To increase result robustness by getting more data providers
- To compare multivariate statistical techniques
- To simplify data transfer (a Fizz[®] option is under discussion)
- To enrich method documentation

Developing a Prefbase :

- To collect datasets of hedonic scales from consumer trials
- The database was set up a couple of months ago
- Data collection has just begun within INRA, CESG and members of ACTIA (technical centers for the food industries)
- Opening it to external partners is under discussion ...